Ectopic divisions in vascular and ground tissues of Arabidopsis thaliana result in distinct leaf venation defects

نویسندگان

  • C. L. Wenzel
  • J. Marrison
  • J. Mattsson
  • J. Haseloff
  • S. M. Bougourd
چکیده

Leaf venation patterns vary considerably between species and between leaves within a species. A mechanism based on canalization of auxin transport has been suggested as the means by which plastic yet organized venation patterns are generated. This study assessed the plasticity of Arabidopsis thaliana leaf venation in response to ectopic ground or procambial cell divisions and auxin transport inhibition (ATI). Ectopic ground cell divisions resulted in vascular fragments between major veins, whereas ectopic procambial cell divisions resulted in additional, abnormal vessels along major veins, with more severely perturbed lines forming incomplete secondary and higher-order venation. These responses imply limited vascular plasticity in response to unscheduled cell divisions. Surprisingly, a combination of ectopic ground cell divisions and ATI resulted in massive vascular overgrowth. It is hypothesized that the vascular overproduction in auxin transport-inhibited wild-type leaves is limited by simultaneous differentiation of ground cells into mesophyll cells. Ectopic ground cell divisions may negate this effect by providing undifferentiated ground cells that respond to accumulated auxin by differentiation into vascular cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene transcriptomic profile in arabidopsis thaliana mediated by radiation-induced bystander effects

Background: The in vivo radiation-induced bystander effects (RIBE) at the developmental, genetic, and epigenetic levels have been well demonstrated using model plant Arabidopsis thaliana (A. thaliana). However, the mechanisms underlying RIBE in plants are not clear, especially lacking a comprehensive knowledge about the genes and biological pathways involved in the RIBE in plants. Materials and...

متن کامل

Testing models for the leaf economics spectrum with leaf and whole-plant traits in Arabidopsis thaliana

The leaf economics spectrum (LES) describes strong relationships between multiple functional leaf traits that determine resource fluxes in vascular plants. Five models have been proposed to explain these patterns: two based on patterns of structural allocation, two on venation networks and one on resource allocation to cell walls and cell contents. Here we test these models using data for leaf ...

متن کامل

The TORNADO1 and TORNADO2 genes function in several patterning processes during early leaf development in Arabidopsis thaliana.

In multicellular organisms, patterning is a process that generates axes in the primary body plan, creates domains upon organ formation, and finally leads to differentiation into tissues and cell types. We identified the Arabidopsis thaliana TORNADO1 (TRN1) and TRN2 genes and their role in leaf patterning processes such as lamina venation, symmetry, and lateral growth. In trn mutants, the leaf v...

متن کامل

incurvata13, a Novel Allele of AUXIN RESISTANT6, Reveals a Specific Role for Auxin and the SCF Complex in Arabidopsis Embryogenesis, Vascular Specification, and Leaf Flatness1[W][OA]

Auxin plays a pivotal role in plant development by modulating the activity of SCF ubiquitin ligase complexes. Here, we positionally cloned Arabidopsis (Arabidopsis thaliana) incurvata13 (icu13), a mutation that causes leaf hyponasty and reduces leaf venation pattern complexity and auxin responsiveness. We found that icu13 is a novel recessive allele of AUXIN RESISTANT6 (AXR6), which encodes CUL...

متن کامل

Developmental role and auxin responsiveness of Class III homeodomain leucine zipper gene family members in rice.

Members of the Class III homeodomain leucine zipper (Class III HD-Zip) gene family are central regulators of crucial aspects of plant development. To better understand the roles of five Class III HD-Zip genes in rice (Oryza sativa) development, we investigated their expression patterns, ectopic expression phenotypes, and auxin responsiveness. Four genes, OSHB1 to OSHB4, were expressed in a loca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2012